3.340 \(\int \frac {\tan ^4(e+f x)}{(a+b \tan ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=123 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{b^{3/2} f}-\frac {a \tan (e+f x)}{b f (a-b) \sqrt {a+b \tan ^2(e+f x)}}+\frac {\tan ^{-1}\left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f (a-b)^{3/2}} \]

[Out]

arctan((a-b)^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/(a-b)^(3/2)/f+arctanh(b^(1/2)*tan(f*x+e)/(a+b*tan(f*x+
e)^2)^(1/2))/b^(3/2)/f-a*tan(f*x+e)/(a-b)/b/f/(a+b*tan(f*x+e)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3670, 470, 523, 217, 206, 377, 203} \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{b^{3/2} f}+\frac {\tan ^{-1}\left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f (a-b)^{3/2}}-\frac {a \tan (e+f x)}{b f (a-b) \sqrt {a+b \tan ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^4/(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]]/((a - b)^(3/2)*f) + ArcTanh[(Sqrt[b]*Tan[e + f*x
])/Sqrt[a + b*Tan[e + f*x]^2]]/(b^(3/2)*f) - (a*Tan[e + f*x])/((a - b)*b*f*Sqrt[a + b*Tan[e + f*x]^2])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(a*e^(2
*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*n*(b*c - a*d)*(p + 1)), x] + Dist[e^(2
*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) +
(a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \frac {\tan ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^4}{\left (1+x^2\right ) \left (a+b x^2\right )^{3/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {a \tan (e+f x)}{(a-b) b f \sqrt {a+b \tan ^2(e+f x)}}+\frac {\operatorname {Subst}\left (\int \frac {a+(a-b) x^2}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{(a-b) b f}\\ &=-\frac {a \tan (e+f x)}{(a-b) b f \sqrt {a+b \tan ^2(e+f x)}}+\frac {\operatorname {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{(a-b) f}+\frac {\operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{b f}\\ &=-\frac {a \tan (e+f x)}{(a-b) b f \sqrt {a+b \tan ^2(e+f x)}}+\frac {\operatorname {Subst}\left (\int \frac {1}{1-(-a+b) x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{(a-b) f}+\frac {\operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{b f}\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{(a-b)^{3/2} f}+\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{b^{3/2} f}-\frac {a \tan (e+f x)}{(a-b) b f \sqrt {a+b \tan ^2(e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 3.20, size = 250, normalized size = 2.03 \[ \frac {a \sin (2 (e+f x)) \sec ^2(e+f x) \left (\frac {(a-b) \sqrt {\frac {\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right )\right |1\right )}{\sqrt {2}}-\frac {b \sqrt {\frac {\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}} \Pi \left (-\frac {b}{a-b};\left .\sin ^{-1}\left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right )\right |1\right )}{\sqrt {2}}-a+b\right )}{\sqrt {2} b f (a-b)^2 \sqrt {\sec ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^4/(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

(a*(-a + b + ((a - b)*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]*EllipticF[ArcSin[Sqrt[((a +
b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1])/Sqrt[2] - (b*Sqrt[((a + b + (a - b)*Cos[2*(e +
f*x)])*Csc[e + f*x]^2)/b]*EllipticPi[-(b/(a - b)), ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x
]^2)/b]/Sqrt[2]], 1])/Sqrt[2])*Sec[e + f*x]^2*Sin[2*(e + f*x)])/(Sqrt[2]*(a - b)^2*b*f*Sqrt[(a + b + (a - b)*C
os[2*(e + f*x)])*Sec[e + f*x]^2])

________________________________________________________________________________________

fricas [B]  time = 1.36, size = 974, normalized size = 7.92 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/2*((a^3 - 2*a^2*b + a*b^2 + (a^2*b - 2*a*b^2 + b^3)*tan(f*x + e)^2)*sqrt(b)*log(2*b*tan(f*x + e)^2 + 2*sqrt
(b*tan(f*x + e)^2 + a)*sqrt(b)*tan(f*x + e) + a) + (b^3*tan(f*x + e)^2 + a*b^2)*sqrt(-a + b)*log(-((a - 2*b)*t
an(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)*tan(f*x + e) - a)/(tan(f*x + e)^2 + 1)) - 2*(a^2*b -
 a*b^2)*sqrt(b*tan(f*x + e)^2 + a)*tan(f*x + e))/((a^2*b^3 - 2*a*b^4 + b^5)*f*tan(f*x + e)^2 + (a^3*b^2 - 2*a^
2*b^3 + a*b^4)*f), -1/2*(2*(a^3 - 2*a^2*b + a*b^2 + (a^2*b - 2*a*b^2 + b^3)*tan(f*x + e)^2)*sqrt(-b)*arctan(sq
rt(b*tan(f*x + e)^2 + a)*sqrt(-b)/(b*tan(f*x + e))) - (b^3*tan(f*x + e)^2 + a*b^2)*sqrt(-a + b)*log(-((a - 2*b
)*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)*tan(f*x + e) - a)/(tan(f*x + e)^2 + 1)) + 2*(a^2*
b - a*b^2)*sqrt(b*tan(f*x + e)^2 + a)*tan(f*x + e))/((a^2*b^3 - 2*a*b^4 + b^5)*f*tan(f*x + e)^2 + (a^3*b^2 - 2
*a^2*b^3 + a*b^4)*f), 1/2*(2*(b^3*tan(f*x + e)^2 + a*b^2)*sqrt(a - b)*arctan(-sqrt(b*tan(f*x + e)^2 + a)/(sqrt
(a - b)*tan(f*x + e))) + (a^3 - 2*a^2*b + a*b^2 + (a^2*b - 2*a*b^2 + b^3)*tan(f*x + e)^2)*sqrt(b)*log(2*b*tan(
f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(b)*tan(f*x + e) + a) - 2*(a^2*b - a*b^2)*sqrt(b*tan(f*x + e)^2
+ a)*tan(f*x + e))/((a^2*b^3 - 2*a*b^4 + b^5)*f*tan(f*x + e)^2 + (a^3*b^2 - 2*a^2*b^3 + a*b^4)*f), ((b^3*tan(f
*x + e)^2 + a*b^2)*sqrt(a - b)*arctan(-sqrt(b*tan(f*x + e)^2 + a)/(sqrt(a - b)*tan(f*x + e))) - (a^3 - 2*a^2*b
 + a*b^2 + (a^2*b - 2*a*b^2 + b^3)*tan(f*x + e)^2)*sqrt(-b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-b)/(b*tan(
f*x + e))) - (a^2*b - a*b^2)*sqrt(b*tan(f*x + e)^2 + a)*tan(f*x + e))/((a^2*b^3 - 2*a*b^4 + b^5)*f*tan(f*x + e
)^2 + (a^3*b^2 - 2*a^2*b^3 + a*b^4)*f)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \left (f x + e\right )^{4}}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(tan(f*x + e)^4/(b*tan(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.27, size = 193, normalized size = 1.57 \[ -\frac {\tan \left (f x +e \right )}{f b \sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}+\frac {\ln \left (\tan \left (f x +e \right ) \sqrt {b}+\sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}\right )}{f \,b^{\frac {3}{2}}}-\frac {\tan \left (f x +e \right )}{f a \sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}-\frac {b \tan \left (f x +e \right )}{a \left (a -b \right ) f \sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}+\frac {\sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {\left (a -b \right ) b^{2} \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}\right )}{f \left (a -b \right )^{2} b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^(3/2),x)

[Out]

-1/f*tan(f*x+e)/b/(a+b*tan(f*x+e)^2)^(1/2)+1/f/b^(3/2)*ln(tan(f*x+e)*b^(1/2)+(a+b*tan(f*x+e)^2)^(1/2))-1/f*tan
(f*x+e)/a/(a+b*tan(f*x+e)^2)^(1/2)-b*tan(f*x+e)/a/(a-b)/f/(a+b*tan(f*x+e)^2)^(1/2)+1/f/(a-b)^2*(b^4*(a-b))^(1/
2)/b^2*arctan((a-b)*b^2/(b^4*(a-b))^(1/2)/(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \left (f x + e\right )^{4}}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(tan(f*x + e)^4/(b*tan(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {tan}\left (e+f\,x\right )}^4}{{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)^4/(a + b*tan(e + f*x)^2)^(3/2),x)

[Out]

int(tan(e + f*x)^4/(a + b*tan(e + f*x)^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan ^{4}{\left (e + f x \right )}}{\left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**4/(a+b*tan(f*x+e)**2)**(3/2),x)

[Out]

Integral(tan(e + f*x)**4/(a + b*tan(e + f*x)**2)**(3/2), x)

________________________________________________________________________________________